摘要
针对当前胶囊网络分类模型在高光谱图像分类中存在空谱联合信息利用不足和收敛较慢的问题,提出一种结合多尺度Octave三维卷积和胶囊网络的分类模型。首先,使用主成分分析(PCA)来降低高维的光谱特征并保留其关键特征;其次,通过多尺度Octave三维卷积模块使模型能够适应当前数据集目标尺寸跨度较大的特点,在减少空间冗余的同时提高高光谱图像的空谱联合信息的利用;最后,对动态路由算法进行改进,使用向量长度的相似性与方向的相似性来衡量两个向量的一致程度,从而解决网络在训练过程中收敛较慢的问题。为了验证改进后模型的有效性,选择Pavia University公开高光谱数据集,并且通过OA、AA以及Kappa系数将分类结果与当前主流的分类模型进行对比实验。结果表明,在Pavia University数据集上,改进后的模型在OA、AA以及Kappa系数上的精度要高于其他模型,因此,该模型能够更好地应用于高光谱遥感图像分类任务中。