许多应用场景要求每个类别的数量相对平衡,而传统模糊C均值(FCM)聚类算法无法实现此功能.为此,利用标签信息构造标签分布熵评价聚类的平衡度,然后将标签分布熵、模糊隶属度矩阵与标签矩阵之间的平方损失同时引入到传统FCM中,进而提出一种标签分布熵正则的模糊C均值平衡聚类方法 (FCMLDE).同时,利用迭代方法和增广拉格朗日乘数法设计该模型的优化算法.最后,利用6个真实数据集进行聚类实验,结果表明,所提方法在聚类性能和平衡性能上均具有很好的优势.