摘要
针对扬声器异常声分类中异常声特征提取以及分类识别两个关键环节,提出一种基于变分模态分解(VMD)多尺度熵(MSE)与灰狼算法优化支持向量机(GWO-SVM)结合的扬声器异常声分类方法。首先,对扬声器声响应信号进行VMD分解得到一系列本征模态函数(IMF),计算各阶IMF与原始信号的相关系数,然后选择相关系数高的IMF提取该IMF的MSE作为特征向量,最后利用灰狼算法优化支持向量机模型识别故障类型。实验结果表明,在5种状态下扬声器单元分类的识别中,较经验模态分解(EMD)多尺度熵、VMD多尺度散布熵(MDE)、EMD多尺度散布熵的特征提取方法,VMD多尺度熵呈现出更高的识别准确率,其识别准确率为99.3%。能更好地表征异常声特征。
- 单位