摘要

针对时域盲解卷积算法对单一故障机械声信号有效,及传统稀疏分量分析对声信号分析失效等问题,提出一种盲解卷积、形态滤波和频域压缩感知重构的稀疏分量分析相结合的轴承复合故障声学诊断方法。通过时域盲解卷积算法优选分量结果,提取声信号的冲击成分。使用形态滤波滤除背景噪声。使用模糊C均值聚类估计混合矩阵,重构传感矩阵,并运用稀疏度自适应匹配追踪基算法(Sparsity adaptive matching pursuit,SAMP)的频域压缩感知重构分离信号。双通道滚动轴承故障声信号分析结果表明该方法能够有效分离和提取滚动轴承故障特征。