摘要
为了提高基于脑电信号(electroencephalogram, EEG)情感识别的准确率,提取了脑电信号的时域与频域特征,并且将其进行组合形成时频域组合特征,作为不同识别模型下的输入。采用集成决策树(bagging tree, BT)、贝叶斯线性分析(Bayesian linear discriminant analysis, BLDA)、线性判别分析(linear discriminant analysis, LDA)及支持向量机(support vector machine, SVM)四种浅层机器学习算法对EEG在效价与唤醒度上进行二分类情感识别。实验结果表明,DEAP数据集在效价上,基于时频域组合特征在BT分类器下的识别精度平均达到92.54%,在唤醒度维度上基于时频域组合特征在SVM下平均识别精度达到94.62%。
- 单位