模糊决策粗糙集是决策粗糙集理论在模糊集环境下的重要延伸,然而该模型对含噪声的数据不具有很好的容忍性。为此在传统的模糊相似关系中引入一个限定阈值,提出一种改进的模糊相似关系。在其基础上对原始的模糊决策粗糙集进行重构,提出一种改进的模糊决策粗糙集模型。根据不同的特征选择方式,利用所提出的改进模型设计出两种搜索策略的最小化决策代价特征选择算法。实验分析表明,该算法比传统算法具有更高的优越性。