摘要
针对列车自动驾驶(ATO)过程中的精准停车、准时性、舒适性以及能耗问题,提出一种基于遗传算法与粒子群优化(GAPSO)算法结合的ATO速度曲线优化方法。首先,建立列车ATO运行多目标优化模型,将列车过分相区断电惰行纳入控制策略,并对运行控制策略进行分析;其次,对粒子群优化(PSO)算法进行改进,采用非线性动态惯性权重和改进的加速度系数,并将遗传算子融入其中,从而构成一种全新的GAPSO算法,且验证了GAPSO算法在全局搜索和局部搜索能力以及收敛速度上的优越性。最后,通过GAPSO算法对工况转换点进行寻优,以获取一组满足多目标优化的工况转换点速度,进而得到最优目标速度曲线。仿真实验结果表明,所提优化方法在总体运行时间满足准时性要求的前提下,使能耗降低了13.29%,舒适性提高了26.62%,停车误差降低了21.62%。由此可见,优化后的列车目标速度曲线能够满足多目标要求,该方法为列车ATO多目标优化提供了一种可行的解决方案。
- 单位