摘要

传统非负矩阵分解(NMF)应用于高光谱解混时,容易受到椒盐噪声的干扰,造成解混的失败。以往的稀疏解混需要在涉及信息比较分散且易受噪声影响的空间域中寻找最优特征子集。为了解决这些问题,提出了基于空谱约束的加权稀疏柯西非负矩阵分解(SSCNMF)算法,首先采用基于柯西损失函数的NMF模型,其在抑制极端异常值方面,有着良好的鲁棒性。其次,引入自适应稀疏权重因子,提高了丰度矩阵的稀疏性。同时,加入光谱空间约束项,其中光谱因子用于测量不同光谱之间的丰度稀疏度,空间因子利用了丰度空间域的平滑性,提高了数据特征的提取效率。分别对模拟数据集和真实数据集进行了仿真实验,通过与一些经典高光谱解混算法的对比,验证了SSCNMF算法的有效性和优良的抗噪声性能。