提出一种基于变步长最小均方(LMS)和支持向量机(SVM)的电能表内异物声音自动识别方法。由于SVM分类器对噪声敏感,通过变步长LMS实现对采集的电能表内异物声音信号的降噪,相较于固定步长LMS,信噪比提升明显,耗用时间较少。对声音信号进行时、频域和倒谱分析,并提取其短时特征系数及改进梅尔频率倒谱系数(MFCC)。并采用短时能量和MFCC系数构成混合特征矩阵,对该矩阵降维后输入SVM进行异物声音识别。实验证明:提出的方法计算量小、识别率高,有很好的应用价值。