摘要
在基于深度强化学习(Deep Reinforcement Learning,DRL)的战机自主作战机动决策研究中,战机向攻击区域的自主机动是战机对目标进行有效打击的前提条件.然而,战机活动空域大、各向探索能力不均匀,直接利用DRL获取机动策略面临着训练交互空间大、攻击区域样本分布设置困难,进而训练过程难以收敛.针对该问题,提出了一种基于深度Q网络(Deep Q-Network,DQN)的双网络智能决策方法.通过在战机正前方设置锥形空间,充分利用战机前向探索性能;建立角度捕获网络,利用DRL对战机偏离角调整策略进行拟合,实现偏离角自主调整,使攻击区域处于战机正前方的锥形空间内;建立距离捕获网络,在锥形空间内利用DRL对战机向攻击区域机动策略进行拟合,实现其向攻击区域的有效机动.实验结果表明,以战机活动空域作为交互空间直接引用DRL,不能有效解决战机向攻击区域机动的决策问题;采用基于DRL的双网络决策方法,在1 000次战机自主向攻击区域机动的测试中成功率达到了83.2%,有效解决了战机向己方攻击区域自主机动的决策问题.
-
单位中国人民解放军装备学院