摘要
众所周知,能源危机和环境污染是当前人们所面临的巨大难题和挑战,因此寻找或开发一种高新的技术解决上述难题尤为重要.近年来,基于半导体的光催化技术被广泛应用于能源制备和环境污染物去除领域,该技术通过直接转化太阳能为化学反应所需的能量来产生催化作用,使周围的氧气或水分子激发成活性物质,进而进行催化反应,且同时催化材料自身不受损耗,被认为是一种高效、安全的环境友好型技术.Bi4Ti3O12是一种物理化学性质稳定、环境友好型的半导体材料,也是当前研究较多的一类铋系半导体光催化材料.然而,纯相的Bi4Ti3O12纳米材料自身电子分离效率低且可见光响应范围窄,严重限制了其在光催化领域的应用.Ag纳米颗粒具有等离子共振效应,可以形成强的电场作用,从而增强光的利用和电子-空穴对的产生.碳点(CDs)是一类表面基团丰富、具有独特光物理性质的纳米级碳材料.碳点修饰的半导体光催化剂具有良好的稳定性和光催化活性.因此,制备Ag/CDs/Bi4Ti3O12复合光催化剂可以有效扩宽Bi4Ti3O12的光吸收范围,增强电子-空穴对的分离效率,从而提高光催化活性.本文利用竹子作为碳源,通过简单的水热法合成碳点,以熔盐法合成Bi4Ti3O12纳米片,用简单的物理混合法将碳点修饰在Bi4Ti3O12表面,再通过光沉积法将Ag+还原在CDs/Bi4Ti3O12的表面,从而制备出Ag/CDs/Bi4Ti3O12复合光催化剂.以10mg/L的四环素水溶液作为目标污染物,测试光催化剂在可见光下对目标污染物的降解能力.采用X射线衍射(XRD)、傅里叶红外光谱(FT-IR)、透射电镜(TEM)、扫描电镜(SEM)、荧光光谱(PL)和光电流等表征方法分析了催化剂的结构特征、微观形貌和光电性质等.XRD分析表明Bi4Ti3O12材料被成功合成,在CDs和Ag纳米颗粒进行修饰后未改变Bi4Ti3O12的晶型结构.XPS和EDSmapping的结果均表明复合材料由Ag, C, Bi, Ti和O元素组成,说明Ag/CDs/Bi4Ti3O12复合光催化剂成功制备.UV-visDRS结果表明, Ag和CDs的修饰扩宽了Bi4Ti3O12的可见光吸收范围.荧光光谱和光电流结果也证明了Ag/CDs/Bi4Ti3O12复合光催化剂具有更好的光响应能力和电子分离效率.光催化性能测试最终证实Ag/CDs/Bi4Ti3O12复合光催化剂在可见光下具有良好的催化降解能力.循环实验说明Ag/CDs/Bi4Ti3O12复合光催化剂具有很好的稳定性,是一种具有潜力的催化材料.用不同捕获剂进行了自由基捕获实验,研究了Ag/CDs/Bi4Ti3O12复合光催化剂的催化机理,结果证实超氧自由基和空穴在光催化过程中起主要作用,羟基自由基也部分参与反应.总之,将碳点、Ag纳米颗粒与Bi4Ti3O12结合制备的Ag/CDs/Bi4Ti3O12复合光催化剂具有良好的光催化性能,该工作为相关材料的制备和光催化研究提供了理论依据.
- 单位