摘要

针对动态未知环境下多智能体多目标协同问题,为实现在动态未知环境下多个智能体能够同时到达所有目标点,设计函数式奖励函数,对强化学习算法进行改进。智能体与环境交互,不断重复"探索-学习-决策"过程,在与环境的交互中积累经验并优化策略,在未预先分配目标点的情况下,智能体通过协同决策,能够避开环境中的静态障碍物和动态障碍物,同时到达所有目标点。仿真结果表明,该算法相比现有多智能体协同方法的学习速度平均提高约42.86%,同时智能体能够获得更多的奖励,可以做到自主决策自主分配目标,并且实现同时到达所有目标点的目标。