摘要

基于Map Reduce框架的传统BP神经网络算法收敛缓慢,训练易陷入局部极小点,使迭代次数过多,极大浪费资源。为此,提出并实现改进的并行BP算法,采用动态调节学习率、动量因子调整权重修正值,提升BP网络并行训练效率,利用预处理数据和最大分类概率增强分类的准确性。实验结果表明,改进的并行算法能提高分类准确率,缩短近17/18的训练时间。