摘要

在现代化生产中,旋转机械的精密性和重要性越来越高,朝着大型、高速和自动化方向发展,以至传统故障诊断方法不足以处理海量、多源、高维的测量数据,不能满足安全性和可靠性的要求;因此,首先简要介绍几种典型的深度学习模型,并结合深度学习强大的特征提取能力和聚类分析的优势,对其近些年来在转子系统、齿轮箱和滚动轴承故障诊断的应用情况进行了对比分析;最后总结深度学习模型的优缺点,并从工程实际出发对旋转机械的故障诊断方法进行总结与展望。

全文