摘要

针对合成孔径雷达图像目标检测中存在的样本获取困难且数量有限问题,提出了联合生成对抗网络和检测网络的学习模型。利用原始训练集对特别设计的超快区域卷积神经网络进行预训练;通过基于注意力机制的深度学习生成对抗网络生成高质量合成样本,并输入检测网络进行预测;依据预测信息和概率等价类属标签分配策略为新生样本提供注释信息,并以一定占比对原始训练集进行扩充;利用扩充数据集对检测网络进行再训练。多组仿真实验证明,所提框架能够有效提升网络检测效率和性能。

  • 单位
    中国人民解放军陆军工程大学