摘要

由于PC端的施工人员不安全行为识别模型计算复杂度高、模型体积大,不适合在边缘设备上运行,提出了一种基于双流CNN与Bi-LSTM的轻量级识别模型。模型主要包含双流CNN特征提取、特征融合和行为分类3个模块,在双流CNN特征提取模块中使用高效的轻量化网络ShuffleNetV2代替传统CNN以提升计算效率,同时添加卷积注意力模块获取关键特征以提高行为识别准确率;在特征融合模块中引入Bi-LSTM网络获取视频前后的关联信息,实现双流特征融合;在行为分类模块中利用注意力机制实现自适应分配权重,从而进一步提升施工人员不安全行为识别的准确率。最后,采用UCF-101数据集和自建数据集进行模型训练和验证,该模型的累加乘积操作次数为7.73 G,参数量为5.38 M,均优于传统的双流CNN方法;此外,模型在2个数据集上的识别准确率分别为94.3%和94.8%,均优于双流CNN-MobileNetV3等其他轻量级模型。实验结果表明所提模型相对于传统双流CNN具有更低的计算复杂度、更小的模型参数量以及更高的识别准确率,适合在资源受限的边缘设备上部署与运行。

全文