常规单RBF神经网络板形识别模型不能全面分离出输入变化对每个特征参数的影响,为此设计了多RBF神经网络板形识别模型,用多个子网络分别识别不同的特征参数,能够更直接、更充分的提取出输入与每个输出的关系。仿真研究结果表明:所设计的多RBF神经网络板形识别模型能够正确识别出全部板形缺陷的类型,并且识别精度上比单RBF神经网络板形识别模型提高了16.1%。