摘要
通过风电机组状态监测进行故障预警,可防止故障进一步发展,降低风场运维成本。为充分挖掘风电机组监控与数据采集(SCADA)各状态参数时序信息,以及不同参数之间的非线性关系,该文将深度学习中自动编码器(AE)与卷积神经网络(CNN)相结合,提出基于深度卷积自编码(DCAE)的风电机组状态监测故障预警方法。首先基于历史SCADA数据离线建立基于DCAE的机组正常运行状态模型,然后分析重构误差确定告警阈值,使用EMWA控制图对实时对机组状态监测并进行故障预警。以北方某风电场2 MW双馈型风电机组叶片故障为实例进行实验分析,结果表明该文提出DCAE状态监测故障预警方法,可有效对机组故障提前预警,且优于现有基于深度学习的风电机组故障预警方法,可显著提升重构精度、减少模型参数和训练时间。
- 单位