摘要
网格细胞是动物大脑中与空间认知和导航有关的重要神经元,具有拓展至整个空间的六边形放电野。位置细胞是网格细胞重要的信息源,可以通过Hebbian学习生成网格细胞,但是现有模型对Hebbian学习的脉冲自适应函数或学习窗函数做了预先的墨西哥帽模型假设。针对该问题提出一种基于差分Hebbian学习的位置细胞至网格细胞模型,利用细胞放电率的变化自发产生墨西哥帽模型的输入关联,然后通过对位置细胞至网格细胞的突触权重进行竞争性非线性限制,生成具有六边形放电野分布的网格细胞。仿真结果表明,该模型可以为无人运行体类脑导航系统的构建提供借鉴。
-
单位空军工程大学信息与导航学院