结合卷积神经网络的HEVC帧内编码压缩改进算法

作者:王婷; 何小海*; 孙伟恒; 熊淑华; Karn Pradeep
来源:太赫兹科学与电子信息学报, 2020, 18(02): 291-297.
DOI:10.11805/TKYDA2019065

摘要

近年来,卷积网络深度学习已在图像处理、目标检测等领域取得巨大成功。受其启发,将卷积神经网络(CNN)应用于传统视频压缩标准已成为一个新的研究热点。本文提出一种集成卷积神经网络的高效视频编码(HEVC)压缩改进算法,将下采样过程、HEVC的编解码过程、上采样及质量增强过程集成为一体。为高效提取视频帧的结构特征,在所提压缩算法中集成了两个卷积神经网络。提出了一种下采CNN(DwSCNN)代替双三次下采,在有效降低分辨率的同时保留细节信息,得到更为紧凑的低分辨率视频序列,将此低分辨率视频序列通过HEVC帧内编码进行进一步的数据量压缩,通过提出一个质量增强CNN(PPCNN)来改善解码后恢复到原始分辨率的降质视频序列。实验结果显示,本文压缩改进算法在低码率段与标准HEVC相比,能达到更好的质量重建,并且在接近一致的PSNR值时,能节省39.46%的时间和11.04%的比特率,本文算法的视频压缩性能优于HEVC标准算法和相关文献方法。

全文