摘要

为从含有较强噪声的缸盖振动信号中提取有效的故障特征并进行故障分类,提出了采用独立变分模态分解(independent variational mode decomposition,简称IVMD)与改进核极限学习机(improved kernel extreme learning machine,简称IKELM)的发动机故障诊断方法。首先,根据频谱循环相干系数选取匹配波形对信号进行端点延拓,并利用变分模态分解(variational mode decomposition,简称VMD)将延拓后信号分解为一系列固有模态分量,有效抑制了VMD中的端点效应;其次,选取有效分量作为输入观测信号,进行核独立成分分析,进一步分离干扰噪声与有效信号,并消除模态混叠,得到相互独立的有效故障特征频带,进而提取各频带的自回归模型参数、多尺度模糊熵和标准化能量矩构建故障特征向量集;最后,建立基于社会情感优化算法的IKELM分类模型,对故障特征进行分类,实现发动机故障诊断。仿真和实验结果表明,所提出的方法可有效抑制VMD的端点效应,提高信号分解精度,消除噪声干扰并分离出相互独立的有效故障特征频带,增强特征参数辨识度,最终提高发动机故障诊断速度与精度,发动机故障诊断平均准确率达到99.85%。

  • 单位
    中国人民解放军陆军工程大学