摘要

本文提出了一种镜像梯度下降梯度上升算法来求解单边相对光滑的非凸-凹极小极大问题。在算法的每次迭代中,我们采用镜像梯度下降步来更新相对光滑的变量,采用梯度上升投影步来更新目标函数中光滑的变量。本文在理论上证明了算法收敛到ε-近似一阶稳定点的迭代复杂度是O(ε~(-4))。