摘要

针对现有基于时域特征的高压油泵故障诊断准确率低的问题,笔者提出一种参数优化变分模态分解(VMD)算法和散布熵的特征提取方法,并采用支持向量机(SVM)进行故障诊断.首先,基于对高压油泵工作原理及典型故障的分析,利用AMESim平台搭建高压油泵仿真模型进行故障模拟和信号采集.然后,针对VMD效果受限于分解个数和惩罚因子选取的问题,采用改进灰狼优化(IGWO)算法对VMD进行参数寻优.通过计算各模态的散布熵值形成故障特征向量,最后,采用SVM对故障特征向量进行训练和诊断,实现高压油泵的故障诊断.该方法的故障诊断准确率可达到95%以上,能有效地实现高压油泵故障诊断.