摘要

在很多应用领域中,向量的Top-k连接查询是一种很重要的操作,给定两个向量集合R和S,Top-k连接查询要求从R和S中返回距离最小的前k个向量对.由于数据的海量性和高维特性,传统的集中式算法已经无法在可接受的时间内完成连接查询任务.MapReduce作为一个并行处理框架,能够有效地处理大规模数据.由于其高可扩展性、高可用性等特点,MapReduce已经成为海量数据处理的首选实现方案,在很多领域都得到了广泛的应用.文中基于分段累积近似法对高维向量进行降维,然后利用符号累积近似法对高维向量进行分组;在此基础上,结合MapReduce框架,提出了基于SAX的并行Top-k连接查询算法.实验表明,文中所提方案具有良好的性能和扩展性.