摘要
利用可再生电力驱动水分解提供了一种绿色和可持续的方式来生产氢气(H2),而提高水分解效率的关键是开发高效的电催化剂.作为水分解反应的阴极,析氢反应(HER)仅需要两电子转移,目前的研究较为成熟.相比之下,析氧反应(OER)因涉及四个电子的转移,比HER过程更复杂.在众多析氧催化剂中,镍铁(NiFe)基电催化剂是碱性电解液体系中最佳的OER催化剂之一,然而其在中性及近中性体系中活性降低较多,从而限制了其在中性的海水电解及二氧化碳还原体系中的应用.目前,造成NiFe基催化剂在中性体系中性能较差的具体机制尚不清晰.文献报道,随着体系pH逐渐降低,NiFe基催化剂析氧性能也会随之变差;深入研究发现,碱性体系中更易于形成高价的Ni,Fe物质,但其是否对催化剂在水分解过程中有影响仍有待进一步研究.本文将电化学测试与原位光谱技术相结合,对镍铁层状双金属氢氧化物(NiFe LDH)在不同pH电解液体系中的析氧反应机理进行深入研究.电化学测试结果表明,随着pH值逐渐降低,NiFe LDH催化剂的析氧性能逐渐变差.原位表面增强拉曼光谱结果表明,不同pH电解液体系中NiOOH和“活性氧”物质的形成与施加的阳极电位有关,高价Ni物质在高pH电解液中更容易形成,而在中性及近中性体系中则需要较高的电位才可以形成.引入原位57Fe穆斯堡尔谱以观察稳定阳极电位条件下Fe氧化态的变化,测试结果表明,高价的Fe4+物质在碱性条件容易形成,而对于中性及近中性体系中,在高施加电位下仍旧难以形成Fe4+物质.为探究高价态Ni,Fe是否影响NiFe基催化剂的析氧性能,利用电化学活化方法构筑了具有Ni3+和Fe4+物质的NiFe CVA500 (500圈CV循环)催化剂,保证其在不同的pH电解液体系中保持相同的初始反应状态.在对应pH体系中,电化学活化的NiFe CVA500催化剂相较于原始的NiFe LDH性能有所提升,但在中性体系中的OER性能仍然低于碱性体系中的性能.基于电化学及原位光谱测量结果表明,Ni3+和Fe4+物质的形成并不是影响不同pH条件下OER性能的决定性因素.OER电化学性能、动力学研究和甲醇氧化实验结果发现,NiFe LDH在不同pH体系中的析氧反应决速步是不同的,在碱性电解液体系中,其决速步是从*O到*OOH,而中性体系中*OH的形成为决速步.综上,本文为阐明NiFe基催化剂在不同pH电解液体系中的OER反应机制提供了新的见解.
-
单位天津市光电子薄膜器件与技术重点实验室; 南开大学; 中国科学院大连化学物理研究所