摘要
将神经元网络建模应用于炼油厂腐蚀速率预测,整理分析现场数据,对神经元网络模型进行训练,建立了低温腐蚀速率预测模型。采用改进的Levenberg-Marquardt算法训练模型,较传统的梯度下降法可以更好地完成算法收敛。神经元网络建模后,可以将现有的腐蚀数据涵盖在腐蚀模型中,便于腐蚀数据的管理和查询,同时对现场参数变化影响腐蚀速率的情况起到了预测作用。预测结果与实际值之间的平均方差为0.013 2,可以满足现场需要。
-
单位中国科学院金属研究所; 中国石油化工股份有限公司