基于序列注意力机制的卷积神经网络异常检测

作者:李苑; 王国胤*; 李智星; 王化明; 周政; 姚钟毓; 梁馨元
来源:郑州大学学报(理学版), 2019, 51(02): 17-22.
DOI:10.13705/j.issn.1671-6841.2018149

摘要

随着互联网的飞速发展,Web攻击已经成为目前最严峻的网络安全威胁之一.一小段潜藏在正常Web请求中的恶意代码极有可能导致严重的信息泄露或其他安全事故.针对这一威胁,现有的研究主要集中于模式匹配与语法分析.然而,模式匹配和语法分析严重依赖于人力与专家知识,且通常只能检测出是否具有威胁,但不能定位恶意代码区域.提出一种新的卷积神经网络算法,可以从Web请求中检测出SQL注入攻击、Command攻击、本地文件包含和跨站脚本攻击等.得益于序列注意力机制,所提出的算法还可以从URL中定位出恶意代码的位置.实验结果表明,SA-CNN可以有效检测和定位URL中的恶意代码,并在几个公开的短文本分类数据集上也有良好的表现.