摘要
本发明公开一种基于深度卷积网络和弱监督学习的SAR图像语义分割方法,利用SAR图像混合像素子空间互不连通的极不匀质区域的编号作为SAR图像混合像素子空间训练图像块的样本标签,本发明的标签只能表明不同的图像块是否来自同一个极不匀质区域,属于弱监督学习的过程,本发明采用弱监督深度学习的方法来学习SAR图像混合像素子空间的极不匀质区域。基于这种弱监督标签,不仅节省了大量的人力、物力,也利用深度学习很好地挖掘了SAR图像结构复杂的极不匀质区域地物表示问题,将测试输出向量进行区域统计编码,提高了极不匀质区域表征能力,从而提高SAR图像语义分割的性能。
- 单位