针对多雷达数据融合问题,提出了基于时间序列的聚类算法,用于实现航迹相关,即以时间序列为基础把聚类模型转化为基于特征匹配的聚类算法。进一步考虑到多目标密集时,部分来自不同目标的数据可能比来自同一目标的数据更接近,易导致关联错误,为此提出了基于时间序列的模糊聚类算法。对上述两种算法的聚类结果,应用卡尔曼滤波器实现滤波跟踪,在不同的情况下仿真后发现,在跟踪目标较少且相互位置较远的情况下,两种算法均有效,在跟踪目标较多且相互位置靠近的情况下,基于时间序列的模糊聚类算法更有效。