摘要

损伤程度评估对于旋转设备的故障预测与维护至关重要。Lempel-Ziv复杂度已被广泛用于旋转设备的定量故障诊断。但是传统Lempel-Ziv复杂度指标只能在单一尺度提取故障信息,难以全面挖掘故障特征。为此,学者提出了多尺度Lempel-Ziv复杂度。然而,多尺度分析会缩减时间序列的长度,易于导致评估结果不准确。因此,本文提出了一种基于变步长多尺度Lempel-Ziv复杂度融合的旋转设备损伤程度评估指标。首先采用变步长策略优化粗粒化过程,更全面地挖掘故障信息;然后运用基于拉普拉斯得分加权的融合方法来评估每个尺度的重要性,将变步长多尺度复杂度序列转化为一个单一但全面的评价指标,即所提的变步长多尺度复杂度融合指标,用以全面挖掘振动信号的特征,实现对旋转设备的损伤评估。本文采用轴承单点缺陷数据、轴承全寿命数据和齿轮箱疲劳试验数据验证所提方法的有效性,并与其他复杂度指标进行比较分析,结果表明:所提指标可100%准确地对轴承故障严重程度及齿轮磨损程度进行评估,发现早期故障,实现旋转设备的定量诊断。