摘要

为有效地从柴油机缸盖表面振动信号中提取气门间隙故障特征,提出一种基于变分模态分解(VMD)和奇异值分解(SVD)的特征提取新方法。采用VMD算法对缸盖振动信号进行分解,利用所得的模态分量构建特征矩阵;接着应用SVD理论将特征矩阵转变为表征频率特性的奇异值序列,探讨了稳定工况下的奇异值序列与不同气门间隙状态之间的关系;由于转速、负荷等工况的改变对信号特征层的影响与故障所引起的信号特征的改变可能非常相似,因此将奇异值序列作为特征参数,输入到随机森林分类器中,构建分类模型,对柴油机变工况下的气门间隙故障进行诊断。实验结果表明:该方法能有效识别气门间隙故障,突出故障敏感特征;与传统基于Hankel矩阵和小波包系数矩阵的SVD特征提取方法相比,该方法所提特征参数在柴油机变工况条件下具有更高的识别率。

全文