为了改善双边滤波的去噪性能,引入图像的局部模式,提出了梯度双边滤波算法。采用相邻像素亮度值的梯度距离来构造梯度相似度核,通过几何邻近度核函数和梯度相似度核函数来对图像邻域像素进行加权平均,从而实现滤波;为了获得最佳的滤波参数,通过经验学习的方法对滤波参数进行选择,最终得到通用的参数配置。实验结果表明,新方法能很好地保持图像的边缘,且与传统去噪模型相比,其去噪性能也是最好的。