基于深度学习的建筑物识别

作者:邓瑞; 林金朝; 杨**
来源:重庆工商大学学报(自然科学版), 2019, 36(04): 17-22.
DOI:10.16055/j.issn.1672-058X.2019.0004.003

摘要

针对随着城市化的快速发展,城市与城市间的辨识度越来越弱,城市地标的概念越来越热门这一现象,提出了一种基于深度学习的建筑物识别方法;使用改进的Faster R-CNN算法作为训练模型,首先,将需要识别的图片输入深度神经网络,提取出特征框图;然后,模型通过区域建议网络预测目标建筑物所在位置的区域建议,并将这些区域建议映射到特征框图上,RoI Pooling层将这些区域建议转换成固定大小的特征框图;最后使用非极大值抑制从预测边界框中移除相似的结果,得到预测边界框以及边框中目标建筑物的类别和概率;实验结果表明:在训练数据集充足的条件下,使用此方法对地标建筑物的识别率能达到90. 8%,通过与其他模型比较分析,该模型具有较好的识别效果。

全文