摘要

针对目前水下小目标检测任务中检测精度低、目标重叠等问题,提出了一种改进YOLOv5s网络的水下小目标检测算法。首先在YOLOv5s的骨干网络中研究嵌入不同数量与位置的卷积块注意力模块来增强网络对特征图重要目标信息的关注;然后在网络颈部增添金字塔池化层,加强局部特征与全局特征的融合,使得特征图表达的信息更加丰富;最后将传统的非极大值抑制算法用中心距离非极大值抑制来代替,改善漏检误检的情况。实验结果表明,该算法在通用水下目标数据集RUIE以及小目标数据集VEDAI上平均精度分别可以达到85.25%和75.12%,显著提升了水下小目标检测的精度,降低了误检率。