摘要

近年来,Wi-Fi感知凭借低成本、非接触、不受光照影响、隐私性好等优势,成为人机交互的新兴研究方向。为了提高室内定位技术的精度,提出了一种基于信道状态信息(Channel State Information, CSI)的加权混合回归(Weighted Mixed Regression, WMR)室内定位算法WMR_SKR。该方法分为离线训练和在线预测两个阶段。离线阶段单独训练支持向量回归(Support Vector Regression, SVR)和K近邻回归(K-Nearest Neighbor Regression, KNR)模型,并获得最优的权重分配,建立加权混合回归模型WMR_SKR。在线阶段通过WMR_SKR模型实时预测目标的位置。实验结果表明,本文的WMR_SKR模型在视距环境中82%的概率下定位精度能够达到1 m,非视距环境中80.6%的概率下达到1.5 m,且平均误差和标准误差均小于1.5 m。WMR_SKR模型有效融合了SVR和KNR的优点,提高了室内定位技术的性能。