摘要
胰腺具有尺寸小、形状不规则且多变的特点,因此在腹部CT图像中自动分割胰腺具有极大的挑战性。为了适应胰腺特征并解决其分割困难的问题,本文提出了一种轻量级的可变形分支注意力融合网络(Deformable Branch Attention Fusion Network, DBA-Net)作为胰腺自动分割方法。该方法首先将候选区域裁剪出来作为网络的输入,以便减少背景干扰并突出胰腺区域;然后引入可变形卷积使网络自适应地学习胰腺的空间结构;最后提出分支注意力融合模块实现低级别特征和高级别特征的融合,帮助解码器更好地还原特征图。本文的方法在NIH数据集上测试的Dice相似系数为85.3%,在MSD数据集上的Dice相似系数为78.9%,相比基线U-Net分别提高了3.9%和5.6%。实验结果表明本文的方法能够对胰腺进行更好的分割。
- 单位