摘要

“黑飞”无人机的泛滥给人们的生活带来了极大威胁。抵制“黑飞”无人机的首要任务是识别它。针对低空无人机识别问题,设计了一种基于改进残差网络的无人机声音识别方法。首先,采集低空无人机声音数据并进行预处理,建立数据集;其次,研究并比较了梅尔频率倒谱系数(MFCC)、对数梅尔谱图(Log-Mel)及其一阶差分等音频特征;然后,设计了基于残差块改进的神经网络(IRBNet);最后,运用设计的IRBNet以及CNN-1、CNN-2、ResNet和IRBNet-1等基准网络对无人机进行识别实验。实验结果表明,IRBNet的识别准确率为97.45%,与其他基准网络相比,准确率更高;设计的IRBNet具有识别无人机的可行性和有效性。