针对高维非线性轮廓数据的实时监控问题,文章提出了基于局部线性嵌入(LLE)和支持向量数据描述(SVDD)相结合的高维非线性轮廓监控方法。首先对受控的高维轮廓数据进行局部线性嵌入降维,然后使用降维后的轮廓数据对SVDD算法进行训练,最后用训练好的SVDD算法对高维轮廓数据进行实时监控。并利用蒙特卡洛方法生成仿真数据,以证实所提方法的有效性。结果表明,相较于其他方法,所提方法在失控状态下平均运行链长较小,能够及时发现生产过程中的异常轮廓。