摘要

针对基于机器学习的人物关系抽取需要人工选取特征的问题,提出一种基于卷积神经网络的中文人物关系抽取方法。采用搜狗实验室公开的中文全网新闻语料库来训练Word2vec模型,得到基于分布式表示的词向量表达,并完成了对百度百科数据集的词向量转化工作。设计一种基于经典CNN模型的中文人物关系抽取系统方案,用CNN模型自动提取特征并进行人物关系的分类,实现了5类常见人物关系的提取,准确率达到92.87%,平均召回率达到86.92%。实验结果表明,该方法无需人工构建复杂特征即可得到较好的人物关系抽取效果。