摘要

心外科患者重症监护室ICU住院时间的影响因素分析和预测有利于住院患者的早期干预和成本控制,对心脏外科患者的治疗和护理具有重要意义。本文使用重症监护数据库MIMIC-IV作为实验数据集,纳入7 567名患者数据,采用最小绝对收缩选择算子Lasso从126个影响因子中筛选出41个重要预测因子。基于梯度增强决策树GBDT算法构建了心外科重症监护室住院时间预测模型。实验结果显示,训练全部预测因子的GBDT模型平均准确率为0.688,高于传统逻辑回归LR算法平均准确率0.603,基于筛选出的重要预测因子的GBDT算法与基于全体因子的GBDT算法在最终平均准确率上效果相同,说明该方法可优化数据采集,准确预测住院时间,为临床决策支持系统提供算法支撑。