摘要

针对选矿成本影响因素较多,各因素间存在耦合和非线性关系以及BP神经网络隐含层节点数难以选择的问题,提出一种基于灰色关联分析与黄金分割法改进BP神经网络的成本预测法。首先运用灰色关联分析法计算各因素与选矿成本的关联度,选取关联度最大的四个变量作为BP网络的输入;其次采用黄金分割法搜索历史数据区间中的理想数值,在高精度的要求下,对隐含层节点数频繁出现的区间进行拓展,求得非线性映射能力更强的隐含层网络节点数;最后利用仪表柜中储存的现场数据对成本预测模型进行验证,验证结果证明该方法能够实时准确地预测选矿成本的变化趋势。