摘要

刀具磨损预测对于提高加工精度和生产效率具有重要意义。刀具磨损预测模型主要包括基于物理的模型和基于数据驱动的模型。基于物理的模型一般使用经验公式或简化公式对刀具磨损过程进行建模,在切削参数变化的情况下其预测精度通常会变低。另一方面,数据驱动模型通过测量数据来估计刀具磨损,没有考虑刀具磨损机理,导致模型泛化性和结果可解释性较差。为了解决这些问题,提出了一种新的用于刀具磨损预测的高斯过程潜力模型。所提出的模型使用高斯过程对刀具磨损物理模型的未知参数进行建模,建立了一个物理信息机器学习模型。高斯过程潜力模型不仅避免了物理模型的参数识别,而且挖掘了来自物理域和数据域的隐藏信息。此外,通过将物理模型与高斯过程的协方差函数相结合,构建了一个物理信息协方差函数来约束模型的输出,提高了预测精度。多工况试验结果表明,所提方法的绝对平均误差和均方根误差分别为2.5945、3.740 8,比传统数据驱动模型的预测误差要更小,预测精度进一步提升。

全文