摘要

提出了一种面向进阶精简指令集机器(ARM)平台的自标定驾驶员疲劳检测方法。对驾驶员不同身高、体型及车内摄像头不同位置,采用驾驶员初始姿态自标定方法;采用改进的基于深度学习的多任务卷积神经网络(MTCNN),提取人脸识别和特征点,以得到头部姿态、眼睛、嘴巴运动等信息;基于操作员序列的深度卷积神经网络,来判断驾驶员的疲劳状态等级。实验了驾驶员疲劳检测方法。结果表明:相对于没有标定,采用本驾驶员自标定的方式,识别准确性提高了15%,采用MTCNN方法和ARM NEON加速技术,在"全志H5"、"树莓派"和Android手机上,运行速度分别是200、150、140 ms,提高约50%。因而,该检测方法,既提高了系统鲁棒性,也满足实时需求。