摘要
森林火灾的频繁发生对人类生命、经济和周围环境构成重大威胁。烟雾是森林火灾初期最显著特征之一,因此烟雾识别对预防森林火灾意义重大,是建立早期火灾探测机制的关键。由于烟雾具有颜色不一、形状多变等特性,导致传统方法对于烟雾识别存在泛化能力弱、响应时间长、误报率高等问题,无法实现对森林火灾的有效监测。基于此,本研究提出了基于改进的YOLOv3-SPP森林火灾烟雾识别方法。改进的YOLOv3-SPP算法通过在主干特征提取网络中加入Focus模块和使用动态标签分配策略降低了计算成本,以及在预测网络中使用解耦头,能够避免在预测过程中分类与回归任务的冲突,并用无锚框检测器替代锚框检测器计算预测框的位置,显著帮助模型更好地定位烟雾,简化解码过程。本研究使用自建的无人机森林火灾遥感影像数据集对模型进行评估,改进后的YOLOv3-SPP算法模型识别精确率达到91.07%,识别速率达到51帧/s,较YOLOv3-SPP模型分别提升了1.14%和17帧/s。实验表明该模型能有效地识别森林火灾烟雾,且通过轻量化的设计能在短时间内对烟雾进行准确识别。
- 单位