该文结合稀疏表示及光谱信息提出了一种新的高光谱遥感图像分类算法。首先提出利用高光谱遥感图像数据集构造学习字典,然后根据学习字典计算每个像元的稀疏系数,从而获得像元的稀疏表示特征,最后根据稀疏表示特征和光谱信息分别构造随机森林,通过投票机制得到最终的分类结果。在AVIRIS高光谱遥感图像上的实验结果表明:该文所提方法能够提高分类效果,且其分类总精度和Kappa系数要高于光谱信息和稀疏表示特征方法。