摘要
基于深度学习方法的二维翼型流场重构能够克服传统风洞试验和计算流体力学模拟的缺点,在提高计算速度的同时保证计算精度。提出的深度学习方法通过模拟RANS方程对速度、压力和密度分布进行预测,最优模型可以达到平均压力、速度、密度误差为5%。该方法的单个算例计算时间约为1s,计算耗时约为常规求解器的0.66%。同时也验证了数据集大小对解的准确性的影响,随着数据集样本数目增大,解的准确性也逐步提高。为深度学习方法在计算流体力学中提供一个现实的二维流场预测应用场景,探讨了深度神经网络方法与气动领域相关问题的匹配度,后续将进一步通过精细化的几何外形表达与无损失的标签提取方法提高深度神经网络方法计算的可用性。
-
单位中国航空工业空气动力研究院