摘要

目的为了解决当前图像融合算法在融合过程中忽略了低频系数中所包含的图像细节信息,导致其输出的融合图像存在间断以及模糊效应的不足,方法提出基于二代Curvelet变换耦合二维因子的图像融合算法。首先,利用具有多尺度以及多方向特性的二代Curvelet变换对源图像进行快速的分解,以获取源图像精细的低频以及高频系数。引入低频系数的信息熵以及区域方差特征来构造二维因子,对低频系数所包含的信息量以及图像的变化程度进行度量,以完成低频系数的融合。随后,利用高频系数的平均梯度特征,构造信息融合规则,完成高频系数的融合,提高融合图像的细节信息含有量。最后,利用像素点的R,G,B值,构造颜色校正因子,对融合图像进行颜色修正,以获取色彩效果较好的融合图像。结果实验结果显示,与当前图像融合算法相比,所提算法具有更强的细节表达能力,其输出的融合图像具有更好的清晰度及视觉效果。结论所提算法拥有较好的融合质量,能提高图像的对比度与分辨率,在图像处理领域具有一定的参考价值。

全文