为提高对驾驶倾向性的辨识准确率,进行驾驶倾向性问卷表调查、模拟驾驶、人因工程测试,考虑了驾驶员的心理、生理信息,以及环境、车辆和操作信息的基础上,提出用广义神经网络确定聚类中心,优化模糊c均值聚类算法,实现目标识别级信息融合的方法,对驾驶倾向性进行预测.利用实验数据对识别方法进行验证,结果表明,该算法对驾驶倾向性的预测准确率达到了85.83%,为进一步研究驾驶员倾向的动态特性提供了依据.