摘要

类脑计算领域目前的研究主要聚焦于如何进行高性能且低功耗的大规模类脑仿真.NEST类脑仿真器应用生态完整,可支持大规模仿真并且具有良好的可扩展性,是目前类脑计算领域中应用最为广泛的仿真器.针对NEST仿真器进行大规模仿真时运行速度慢、运行功耗高的问题,设计并实现了基于异构计算平台的NEST类脑仿真器.本设计采用硬件加速神经元更新、数据重排序设计、多线程设计、软硬件协同设计等方法优化了系统整体性能,在保证NEST仿真器良好应用生态的同时获得更高的计算能效.通过在Xilinx ZCU102异构计算平台上实现该仿真器,实验结果表明:在对经典的类脑应用皮质层视觉模型进行仿真时,神经元更新部分性能是AMD3600X的11.9倍,PYNQ集群的1.2倍,能效是AMD3600X的57.9倍、PYNQ集群的3.1倍;NEST仿真器整体性能是AMD3600X的2.0倍,PYNQ集群的2.1倍,能效是AMD3600X的10.1倍、PYNQ集群的5.8倍,为基于NEST进行大规模类脑仿真提供了一种更高能效的方式.

全文