基于Mask RCNN的矿仓入料口堵塞矿石识别定位研究

作者:罗小燕*; 刘顺; 汤文聪; 王兴卫
来源:有色金属科学与工程, 2022, 13(01): 101-107.
DOI:10.13264/j.cnki.ysjskx.2022.01.013

摘要

针对矿仓入料口堵塞矿石识别过程中现场工况环境复杂、矿石识别检测难度大等问题,采用深度学习和图像处理技术开展矿石智能识别检测的研究,提出基于Mask RCNN的矿石识别检测方法。该方法可以实现对矿石识别的同时进行实例分割,并提出利用矿石轮廓的形心坐标取代Mask RCNN中的外接矩形框定位方法,有效解决矿石定位不精确的问题。实验结果表明:基于Mask RCNN网络的矿石识别模型可以实现对多种数量、不同位姿以及堆叠的矿石精准识别,综合准确率达到97.6%,采用矿石轮廓形心坐标的定位方式可以有效避免因矿石形状和位姿而带来的定位误差,为智能清堵机械手提供精确的视觉引导。

全文